TOYO STYRENE High Functional Polystyrene

♦ Extremely Transparent Polystyrene : GA

Advantages of polystyrene

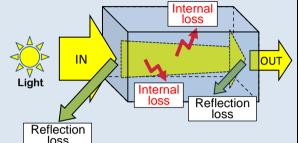
Transparency

Lightness

Hard to warp

	$PS \Rightarrow GA$	PMMA	PC
Specific gravity	© (1.05)	Δ (1.19)	Δ (1.19)
Moisture absorption	0	×	Δ
Formability	0	0	0
Transparency	O⇒⊚	0	0
Yellowing	O⇒⊚	0	0
Heat resistance	0	0	0
Strength	Δ	Δ	0

"Light transmittance of thin plate" ≠ "Transparency of materials"


Thin plate	(thickness = 2mm)	PS	GA10	PMMA	PC
Light tr	90	90	92	90	
Drookdown	Reflection @ IN	5	5	4	5
Breakdown of losses	Internal	≒ 0	≒ 0	≒ 0	≒ 0
01 103363	Reflection @ OUT	5	5	4	5

•Thin plate: Internal loss is negligible.

Reflection loss exclusively determines the light transmittance.

• Thick object: Internal loss is **not** negligible.

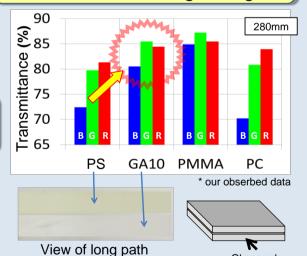
Internal loss have a strong effect on the transparency.

 $Light transmittance = \frac{OUT}{IN} x100 (\%)$

"Extremely Transparent Polystyrene" significantly reduced internal loss

	Light path	PS	GA10	PMMA	PC
Internal	2mm	≒ 0	≒ 0	≒ 0	≒ 0
loss	100mm	5	3	2.5	4.5
(%)	300mm	15	9	8	14

GA10 is almost the same as PMMA

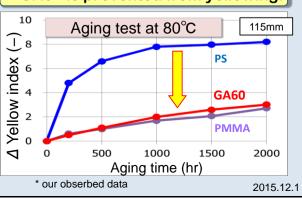

at its internal loss.

20

* our observed data

100mm

— Less Yellowish — Transmittance of blue light is higher!



% 15 SSO 10 PS GA10 PMMA PC

[Applications]Light guide platesLightingsOptical components, etc.

GA60 is prevented from yellowing.

Observed

TOYO STYRENE High Functional Polystyrene

♦ Whitening Resistant Polystyrene : WR

Whitening: A phenomenon PS become hazy because of the various environment. e. g.) high temperature / humidity, hot water.

Polystyrene without Whitening: WR

High Temperature and High Humidity Exposure Test

[Applications] Items exposed to hot / wet condition, Bathroom, etc.

♦ High Heat Resistant Polystyrene : TF

Heat Resistance of Various Plastics

	PS(1) for Injection	PS(2) for Extrusion	TF4000	T080	PMMA for LGP	PC
Vicat softening temp. (°C)	92	103	122	117	100~109	145~150
Total light transmittance (%)	90	90	90	90	92	90

Vicat softening temp. of TF is 20°C higher, compare to a normal PS.

after 20 min.

Test pieces after heated

PS (1) PS (2) TF4000

100℃

| PS (1) PS (2) | TF4000 | PTOO STINGEN

120℃

110℃

Properties

Features	Unit	PS(2)	T080
Vicat softening temp. (under 50 N)	°C	103	117
Heat deflection temp. (under 1.80 MPa)	သိ	82	94
Melt mass-flow rate (200°C, 5 kg)	g/10min	1.6	1.7
Charpy impact strength (notched)	kJ/m²	2.0	1.1
Tensile stress at break	MPa	50	46
Tensile strain at break	%	3	2
Flexural strength	MPa	104	100
Flexural modulus	MPa	3,200	3,250

[Applications] items needed heat resistance and transparency

TOYO STYRENE Flame Retardant Polystyrene

Toyo Styrene Flame Retardant PS is a polystyrene resin with a certain flame-retardant. By the flame-retardant class, we have not only V-2/V-0 series but also 5VA that is usually difficult in PS systems. It has been adopted in response to needs such as consumer electronics, OA equipments and housing equipments.

◆ Representative grade

High Flow and Good Heat Resistance
Halogen type :FS100S (V-0)

Heat Stability and Super Light Resistance
Halogen type :LH30 (V-2)
:ES150 (5VA)

High Flow and Good Light Resistance

Halogen type :J2 (V-2)

Flame-Retardant Compound Resin

- ·Halogen type
- Non-Halogen type

High Strength and Heat Stability

Non-Halogen :NR5 (5VB)

High Cycle Molding and High Heat Creep Endurance

> Halogen type :LH30 (V-2) Non-Halogen :LX20 (V-2)

Test		1111	Halogen type				Non-Halogen	
Properties	Method	Unit	LH30	J2	FS100S	<u>ES150</u>	LX20	NR5
Melt mass-flow rate	ISO 1133	g/10min	7.5	14.5	14.0	7.0	7.3	4.5
Heat deflection temp.	ISO 75-2	S.	75	71	69	70	72	68
Charpy Impact Strength	ISO 179	kJ/m2	9.7	7.5	11.5	10.0	8.3	13.0
Tensile strain at break	ISO 527-2	%	40	45	60	50	35	25
Flexural modulus	ISO 178	MPa	2500	2500	2050	2250	2400	2600
Density	ISO 1183	kg/m3	1090	1100	1165	1185	1070	1110
Flammability	UL94	-	V-2/0.8mm	V-2/0.75mm	V-0/1.5mm	V-0/1.5mm 5VA/1.5mm	V-2/0.8mm	V-0/1.5mm 5VB/2.0mm

*Data shown above is the mean values of neat resin (natural color).

This means that the values are not guarantee ones.

◆ FR-PS Masterbatch

Name	Direction				
	Good control for combination ratio between MB & Resin: Enable customer to design FR-HIPS which is suitable for anticipated Flame Retardance by mixed with optional resins. (compatibility is needed)				
Flores and and MD () (O) Helenes to a					

